Compare commits
7 commits
master
...
optimise-f
Author | SHA1 | Date | |
---|---|---|---|
|
1cca8e6411 | ||
|
40f52fbf03 | ||
|
90f55e89cd | ||
|
a488dbeec2 | ||
|
a259a853e4 | ||
|
e4ac1b70af | ||
|
ce831fb167 |
3 changed files with 151 additions and 125 deletions
|
@ -23,6 +23,7 @@ target_link_libraries(papillon ${catkin_LIBRARIES})
|
||||||
set_property (TARGET papillon APPEND PROPERTY INCLUDE_DIRECTORIES ${OpenCV_INCLUDE_DIRS})
|
set_property (TARGET papillon APPEND PROPERTY INCLUDE_DIRECTORIES ${OpenCV_INCLUDE_DIRS})
|
||||||
set_property (TARGET papillon APPEND PROPERTY INCLUDE_DIRECTORIES ${catkin_INCLUDE_DIRS})
|
set_property (TARGET papillon APPEND PROPERTY INCLUDE_DIRECTORIES ${catkin_INCLUDE_DIRS})
|
||||||
set_property (TARGET papillon APPEND PROPERTY LINK_LIBRARIES ${OpenCV_LIBRARIES})
|
set_property (TARGET papillon APPEND PROPERTY LINK_LIBRARIES ${OpenCV_LIBRARIES})
|
||||||
|
set( CMAKE_EXPORT_COMPILE_COMMANDS 1 )
|
||||||
|
|
||||||
|
|
||||||
install(TARGETS papillon DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})
|
install(TARGETS papillon DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})
|
||||||
|
|
1
commands
Normal file
1
commands
Normal file
|
@ -0,0 +1 @@
|
||||||
|
catkin_make -DCMAKE_BUILD_TYPE=Debug
|
170
src/papillon.cpp
170
src/papillon.cpp
|
@ -3,6 +3,7 @@
|
||||||
#include <cv_bridge/cv_bridge.h>
|
#include <cv_bridge/cv_bridge.h>
|
||||||
#include <sensor_msgs/image_encodings.h>
|
#include <sensor_msgs/image_encodings.h>
|
||||||
#include <geometry_msgs/Twist.h>
|
#include <geometry_msgs/Twist.h>
|
||||||
|
#include <typeinfo>
|
||||||
|
|
||||||
#include <opencv/cv.h>
|
#include <opencv/cv.h>
|
||||||
|
|
||||||
|
@ -13,13 +14,26 @@ using namespace std;
|
||||||
|
|
||||||
class Traite_image {
|
class Traite_image {
|
||||||
public:
|
public:
|
||||||
const static int SENSITIVITY_VALUE = 30;
|
const static int THRESHOLD_DETECT_SENSITIVITY = 10;
|
||||||
const static int BLUR_SIZE = 10;
|
const static int BLUR_SIZE = 5;
|
||||||
|
const static int THRESHOLD_MOV = 5;
|
||||||
|
constexpr static float MOVEMENT_THRES = 0.05;
|
||||||
|
|
||||||
|
constexpr static float FLOW_MIN_QUAL = 0.01;
|
||||||
|
const static int FLOW_MIN_DIST = 20;
|
||||||
|
|
||||||
|
|
||||||
Mat prev;
|
Mat prev;
|
||||||
Mat last_T;
|
|
||||||
|
// Stabilisation transformation matrices
|
||||||
|
Mat T, last_T;
|
||||||
|
|
||||||
bool first = true;
|
bool first = true;
|
||||||
|
|
||||||
|
// Features vectors
|
||||||
|
vector <Point2f> prev_ftr, cur_ftr;
|
||||||
|
|
||||||
|
// Downsize factor
|
||||||
int resize_f = 1;
|
int resize_f = 1;
|
||||||
|
|
||||||
int theObject[2] = {0,0};
|
int theObject[2] = {0,0};
|
||||||
|
@ -66,11 +80,14 @@ class Traite_image {
|
||||||
}
|
}
|
||||||
|
|
||||||
Mat next_stab;
|
Mat next_stab;
|
||||||
stabiliseImg(prev, next, next_stab);
|
trackFeatures(prev, next);
|
||||||
Rect myROI(next_stab.size().width/8, next_stab.size().height/8, next_stab.size().width*3/4, next_stab.size().height*3/4);
|
stabiliseImg(next, next_stab);
|
||||||
Mat next_stab_cropped = next_stab(myROI);
|
trackingOptFlow(prev, next_stab, next_stab);
|
||||||
Mat prev_cropped = prev(myROI);
|
Mat next_stab2;
|
||||||
searchForMovement(prev_cropped, next_stab_cropped, output);
|
trackFeatures(prev, next);
|
||||||
|
stabiliseImg(next, next_stab2);
|
||||||
|
trackingOptFlow(prev, next_stab2, output);
|
||||||
|
//searchForMovementOptFlow(prev_cropped, next_stab_cropped, output);
|
||||||
|
|
||||||
|
|
||||||
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
|
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
|
||||||
|
@ -83,43 +100,39 @@ class Traite_image {
|
||||||
prev = next.clone();
|
prev = next.clone();
|
||||||
}
|
}
|
||||||
|
|
||||||
//int to string helper function
|
|
||||||
string intToString(int number){
|
|
||||||
|
|
||||||
//this function has a number input and string output
|
void trackFeatures(Mat prev, Mat cur) {
|
||||||
std::stringstream ss;
|
|
||||||
ss << number;
|
|
||||||
return ss.str();
|
|
||||||
}
|
|
||||||
|
|
||||||
void stabiliseImg(Mat prev, Mat cur, Mat &output){
|
|
||||||
Mat cur_grey, prev_grey;
|
Mat cur_grey, prev_grey;
|
||||||
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
|
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
|
||||||
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
|
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
|
||||||
|
|
||||||
// vector from prev to cur
|
// vector from prev to cur
|
||||||
vector <Point2f> prev_corner, cur_corner;
|
vector <Point2f> prev_corner, cur_corner;
|
||||||
vector <Point2f> prev_corner2, cur_corner2;
|
|
||||||
vector <uchar> status;
|
vector <uchar> status;
|
||||||
vector <float> err;
|
vector <float> err;
|
||||||
|
|
||||||
goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30);
|
goodFeaturesToTrack(prev_grey, prev_corner, 200, FLOW_MIN_QUAL, FLOW_MIN_DIST);
|
||||||
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err);
|
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err);
|
||||||
|
|
||||||
// weed out bad matches
|
// weed out bad matches
|
||||||
|
prev_ftr.resize(0);
|
||||||
|
cur_ftr.resize(0);
|
||||||
for(size_t i=0; i < status.size(); i++) {
|
for(size_t i=0; i < status.size(); i++) {
|
||||||
if(status[i]) {
|
if(status[i]) {
|
||||||
prev_corner2.push_back(prev_corner[i]);
|
prev_ftr.push_back(prev_corner[i]);
|
||||||
cur_corner2.push_back(cur_corner[i]);
|
cur_ftr.push_back(cur_corner[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
Mat T = estimateRigidTransform(prev_corner2, cur_corner2, true); // false = rigid transform, no scaling/shearing
|
|
||||||
|
|
||||||
if(T.data == NULL) {
|
void stabiliseImg(Mat cur, Mat &output){
|
||||||
|
T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
||||||
|
|
||||||
|
if(T.data == NULL)
|
||||||
last_T.copyTo(T);
|
last_T.copyTo(T);
|
||||||
}
|
else
|
||||||
T.copyTo(last_T);
|
T.copyTo(last_T);
|
||||||
|
|
||||||
Mat cur2;
|
Mat cur2;
|
||||||
|
|
||||||
|
@ -128,59 +141,60 @@ class Traite_image {
|
||||||
cur2.copyTo(output);
|
cur2.copyTo(output);
|
||||||
}
|
}
|
||||||
|
|
||||||
void searchForMovement(Mat prev, Mat cur, Mat &output){
|
|
||||||
Mat cur_grey, prev_grey;
|
|
||||||
cur.copyTo(output);
|
|
||||||
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
|
|
||||||
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
|
|
||||||
|
|
||||||
// Subtract the 2 last frames and threshold them
|
void warpPoints(vector<Point2f> p, vector<Point2f> &p_warp, Mat T, bool invert=false) {
|
||||||
Mat thres;
|
Mat H;
|
||||||
absdiff(prev_grey,cur_grey,thres);
|
if(invert)
|
||||||
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
invertAffineTransform(T, H);
|
||||||
// Blur to eliminate noise
|
|
||||||
blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE));
|
|
||||||
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
|
||||||
|
|
||||||
//notice how we use the '&' operator for objectDetected and output. This is because we wish
|
p_warp.clear();
|
||||||
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
for(size_t i=0; i < p.size(); ++i) {
|
||||||
//eg. we draw to the output to be displayed in the main() function.
|
Mat src(3/*rows*/,1 /* cols */,CV_64F);
|
||||||
bool objectDetected = false;
|
|
||||||
Mat temp;
|
|
||||||
thres.copyTo(temp);
|
|
||||||
//these two vectors needed for output of findContours
|
|
||||||
vector< vector<Point> > contours;
|
|
||||||
vector<Vec4i> hierarchy;
|
|
||||||
//find contours of filtered image using openCV findContours function
|
|
||||||
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
|
||||||
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
|
||||||
|
|
||||||
//if contours vector is not empty, we have found some objects
|
src.at<double>(0,0)=p[i].x;
|
||||||
if(contours.size()>0)objectDetected=true;
|
src.at<double>(1,0)=p[i].y;
|
||||||
else objectDetected = false;
|
src.at<double>(2,0)=1.0;
|
||||||
|
|
||||||
if(objectDetected){
|
Mat dst = H*src; //USE MATRIX ALGEBRA
|
||||||
//the largest contour is found at the end of the contours vector
|
p_warp.push_back(Point2f(dst.at<double>(0,0),dst.at<double>(1,0)));
|
||||||
//we will simply assume that the biggest contour is the object we are looking for.
|
|
||||||
vector< vector<Point> > largestContourVec;
|
|
||||||
largestContourVec.push_back(contours.at(contours.size()-1));
|
|
||||||
//make a bounding rectangle around the largest contour then find its centroid
|
|
||||||
//this will be the object's final estimated position.
|
|
||||||
objectBoundingRectangle = boundingRect(largestContourVec.at(0));
|
|
||||||
}
|
}
|
||||||
//make some temp x and y variables so we dont have to type out so much
|
|
||||||
int x = objectBoundingRectangle.x;
|
|
||||||
int y = objectBoundingRectangle.y;
|
|
||||||
int width = objectBoundingRectangle.width;
|
|
||||||
int height = objectBoundingRectangle.height;
|
|
||||||
|
|
||||||
//draw a rectangle around the object
|
|
||||||
rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2);
|
|
||||||
|
|
||||||
//write the position of the object to the screen
|
|
||||||
putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void trackingOptFlow(Mat prev, Mat cur, Mat &output) {
|
||||||
|
cur.copyTo(output);
|
||||||
|
vector <Point2f> cur_ftr_stab;
|
||||||
|
|
||||||
|
//T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
||||||
|
//if(T.data == NULL)
|
||||||
|
// last_T.copyTo(T);
|
||||||
|
//else
|
||||||
|
// T.copyTo(last_T);
|
||||||
|
|
||||||
|
warpPoints(cur_ftr, cur_ftr_stab, T, true);
|
||||||
|
|
||||||
|
vector <Point2f> objects;
|
||||||
|
vector <float> flow_norm;
|
||||||
|
for(size_t i=0; i < prev_ftr.size(); ++i) {
|
||||||
|
flow_norm.push_back(norm(prev_ftr[i] - cur_ftr_stab[i]) / prev.size().height);
|
||||||
|
line(output, prev_ftr[i], cur_ftr[i], Scalar(200,0,0),1);
|
||||||
|
line(output, prev_ftr[i], cur_ftr_stab[i], Scalar(0,200,0),1);
|
||||||
|
}
|
||||||
|
|
||||||
|
for(size_t i=0; i < flow_norm.size(); ++i) {
|
||||||
|
if(flow_norm[i] > MOVEMENT_THRES) {
|
||||||
|
objects.push_back(cur_ftr_stab[i]);
|
||||||
|
prev_ftr.erase(prev_ftr.begin() + i);
|
||||||
|
cur_ftr.erase(cur_ftr.begin() + i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for(size_t i=0; i < objects.size(); ++i) {
|
||||||
|
circle(output, objects[i], 5, Scalar(0, 200, 0), 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
inline bool isFlowCorrect(Point2f u)
|
inline bool isFlowCorrect(Point2f u)
|
||||||
{
|
{
|
||||||
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
|
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
|
||||||
|
@ -194,17 +208,27 @@ class Traite_image {
|
||||||
|
|
||||||
geometry_msgs::Twist twist = geometry_msgs::Twist();
|
geometry_msgs::Twist twist = geometry_msgs::Twist();
|
||||||
|
|
||||||
if(centre_rect.x < centre_image.x)
|
if(centre_rect.x < centre_image.x-THRESHOLD_MOV)
|
||||||
{
|
{
|
||||||
twist.angular.z = 0.2;
|
twist.angular.z = 0.2;
|
||||||
}
|
}
|
||||||
else if(centre_rect.x > centre_image.x)
|
else if(centre_rect.x > centre_image.x+THRESHOLD_MOV)
|
||||||
{
|
{
|
||||||
twist.angular.z = -0.2;
|
twist.angular.z = -0.2;
|
||||||
}
|
}
|
||||||
|
|
||||||
pub_cmd.publish(twist);
|
pub_cmd.publish(twist);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//int to string helper function
|
||||||
|
string intToString(int number){
|
||||||
|
|
||||||
|
//this function has a number input and string output
|
||||||
|
std::stringstream ss;
|
||||||
|
ss << number;
|
||||||
|
return ss.str();
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue