papillon/src/papillon.cpp
2016-06-07 12:56:04 +02:00

243 lines
6.3 KiB
C++

#include "ros/ros.h"
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include <geometry_msgs/Twist.h>
#include <typeinfo>
#include <opencv/cv.h>
#include <sstream>
using namespace cv;
using namespace std;
class Traite_image {
public:
const static int THRESHOLD_DETECT_SENSITIVITY = 10;
const static int BLUR_SIZE = 5;
const static int THRESHOLD_MOV = 5;
constexpr static float MOVEMENT_THRES = 0.05;
constexpr static float FLOW_MIN_QUAL = 0.01;
const static int FLOW_MIN_DIST = 20;
Mat prev;
// Stabilisation transformation matrices
Mat T, last_T;
bool first = true;
// Features vectors
vector <Point2f> prev_ftr, cur_ftr;
// Downsize factor
int resize_f = 1;
int theObject[2] = {0,0};
Rect objectBoundingRectangle = Rect(0,0,0,0);
ros::NodeHandle n;
image_transport::ImageTransport it;
image_transport::Publisher pub_img;
ros::Publisher pub_cmd;
image_transport::Subscriber sub;
Traite_image() : n("~"),it(n) {
pub_img = it.advertise("/image_out", 1);
pub_cmd = n.advertise<geometry_msgs::Twist>("/vrep/drone/cmd_vel", 1);
sub = it.subscribe("/usb_cam/image_raw", 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed"));
}
// This processes an image and publishes the result.
void on_image(const sensor_msgs::ImageConstPtr& msg) {
cv_bridge::CvImageConstPtr bridge_input;
try {
bridge_input = cv_bridge::toCvShare(msg,sensor_msgs::image_encodings::RGB8);
}
catch (Exception& e) {
std::ostringstream errstr;
errstr << "cv_bridge exception caught: " << e.what();
return;
}
//Mat& input = const_cast<Mat&>(bridge_input->image);
const Mat& input = bridge_input->image;
Mat next;
resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f));
Mat output;// = input.clone(); // (input.rows, input.cols, CV_32FC2);
//ROS_INFO("got input");
if (first) {
prev = next.clone();
first = false;
ROS_INFO("first done");
}
Mat next_stab;
trackFeatures(prev, next);
stabiliseImg(next, next_stab);
trackingOptFlow(prev, next_stab, next_stab);
Mat next_stab2;
trackFeatures(prev, next);
stabiliseImg(next, next_stab2);
trackingOptFlow(prev, next_stab2, output);
//searchForMovementOptFlow(prev_cropped, next_stab_cropped, output);
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
// bridge_input is handled by a smart-pointer. No explicit delete needed.
droneTracking(Rect(Point(0,0), output.size()));
//ROS_INFO("pub");
prev = next.clone();
}
void trackFeatures(Mat prev, Mat cur) {
Mat cur_grey, prev_grey;
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
// vector from prev to cur
vector <Point2f> prev_corner, cur_corner;
vector <uchar> status;
vector <float> err;
goodFeaturesToTrack(prev_grey, prev_corner, 200, FLOW_MIN_QUAL, FLOW_MIN_DIST);
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err);
// weed out bad matches
prev_ftr.resize(0);
cur_ftr.resize(0);
for(size_t i=0; i < status.size(); i++) {
if(status[i]) {
prev_ftr.push_back(prev_corner[i]);
cur_ftr.push_back(cur_corner[i]);
}
}
}
void stabiliseImg(Mat cur, Mat &output){
T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
if(T.data == NULL)
last_T.copyTo(T);
else
T.copyTo(last_T);
Mat cur2;
warpAffine(cur, cur2, T, cur.size(),INTER_NEAREST|WARP_INVERSE_MAP);
cur2.copyTo(output);
}
void warpPoints(vector<Point2f> p, vector<Point2f> &p_warp, Mat T, bool invert=false) {
Mat H;
if(invert)
invertAffineTransform(T, H);
p_warp.clear();
for(size_t i=0; i < p.size(); ++i) {
Mat src(3/*rows*/,1 /* cols */,CV_64F);
src.at<double>(0,0)=p[i].x;
src.at<double>(1,0)=p[i].y;
src.at<double>(2,0)=1.0;
Mat dst = H*src; //USE MATRIX ALGEBRA
p_warp.push_back(Point2f(dst.at<double>(0,0),dst.at<double>(1,0)));
}
}
void trackingOptFlow(Mat prev, Mat cur, Mat &output) {
cur.copyTo(output);
vector <Point2f> cur_ftr_stab;
//T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
//if(T.data == NULL)
// last_T.copyTo(T);
//else
// T.copyTo(last_T);
warpPoints(cur_ftr, cur_ftr_stab, T, true);
vector <Point2f> objects;
vector <float> flow_norm;
for(size_t i=0; i < prev_ftr.size(); ++i) {
flow_norm.push_back(norm(prev_ftr[i] - cur_ftr_stab[i]) / prev.size().height);
line(output, prev_ftr[i], cur_ftr[i], Scalar(200,0,0),1);
line(output, prev_ftr[i], cur_ftr_stab[i], Scalar(0,200,0),1);
}
for(size_t i=0; i < flow_norm.size(); ++i) {
if(flow_norm[i] > MOVEMENT_THRES) {
objects.push_back(cur_ftr_stab[i]);
prev_ftr.erase(prev_ftr.begin() + i);
cur_ftr.erase(cur_ftr.begin() + i);
}
}
for(size_t i=0; i < objects.size(); ++i) {
circle(output, objects[i], 5, Scalar(0, 200, 0), 1);
}
}
inline bool isFlowCorrect(Point2f u)
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
}
void droneTracking(Rect img_size)
{
Point2f centre_image = Point2f(img_size.width/2, img_size.height/2);
Point2f centre_rect = Point2f(objectBoundingRectangle.x + objectBoundingRectangle.width/2, objectBoundingRectangle.y + objectBoundingRectangle.height/2);
geometry_msgs::Twist twist = geometry_msgs::Twist();
if(centre_rect.x < centre_image.x-THRESHOLD_MOV)
{
twist.angular.z = 0.2;
}
else if(centre_rect.x > centre_image.x+THRESHOLD_MOV)
{
twist.angular.z = -0.2;
}
pub_cmd.publish(twist);
}
//int to string helper function
string intToString(int number){
//this function has a number input and string output
std::stringstream ss;
ss << number;
return ss.str();
}
};
int main(int argc, char **argv)
{
ros::init(argc, argv, "test_opencv");
Traite_image dataset=Traite_image();
ros::spin();
return 0;
}