OpenGL port of https://github.com/jeschke/water-wave-packets, presented at SIGGRAPH 2017.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

150 lines
7.4 KiB

// Taken from https://github.com/jeschke/water-wave-packets
#pragma once
#include "constants.h"
#include <iostream>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wint-in-bool-context"
#include <Eigen/Dense>
#pragma GCC diagnostic pop
using namespace Eigen;
using namespace std;
// simulation parameters
#define PACKET_SPLIT_ANGLE 0.95105f // direction angle variation threshold: 0.95105=18 degree
#define PACKET_SPLIT_DISPERSION 0.3f // if the fastest wave in a packet traveled PACKET_SPLIT_DISPERSION*Envelopesize ahead, or the slowest by the same amount behind, subdivide this packet into two wavelength intervals
#define PACKET_KILL_AMPLITUDE_DERIV 0.0001f // waves below this maximum amplitude derivative gets killed
#define PACKET_BLEND_TRAVEL_FACTOR 1.0f // in order to be fully blended (appear or disappear), any wave must travel PACKET_BLEND_TRAVEL_FACTOR times "envelope size" in space (1.0 is standard)
#define PACKET_ENVELOPE_SIZE_FACTOR 3.0f // size of the envelope relative to wavelength (determines how many "bumps" appear)
#define PACKET_ENVELOPE_MINSIZE 0.02f // minimum envelope size in meters (smallest expected feature)
#define PACKET_ENVELOPE_MAXSIZE 10.0f // maximum envelope size in meters (largest expected feature)
#define PACKET_BOUNCE_FREQSPLIT true // (boolean) should a wave packet produce smaller waves at a bounce/reflection (->widen the wavelength interval of this packet)?
#define PACKET_BOUNCE_FREQSPLIT_K 31.4f // if k_L is smaller than this value (lambda = 20cm), the wave is (potentially) split after a bounce
#define MAX_SPEEDNESS 0.07f // all wave amplitudes a are limited to a <= MAX_SPEEDNESS*2.0*M_PI/k
// physical parameters
#define SIGMA 0.074f // surface tension N/m at 20 grad celsius
#define GRAVITY 9.81f // GRAVITY m/s^2
#define DENSITY 998.2071f // water density at 20 degree celsius
#define KINEMATIC_VISCOSITY 0.0000089f // kinematic viscosity
#define PACKET_SLOWAVE_K 143.1405792f // k of the slowest possible wave packet
#define PACKET_SLOWAVE_W0 40.2646141f // w_0 of the slowest possible wave packet
// memory management
#define PACKET_BUFFER_DELTA 500000 // initial number of vertices, packet memory will be increased on demand by this stepsize
struct WAVE_PACKET
{
// positions, directions, speed of the tracked vertices
Vector2f pos1,pos2,pos3; // 2D position
Vector2f dir1,dir2,dir3; // current movement direction
float speed1,speed2,speed3; // speed of the particle
Vector2f pOld1,pOld2,pOld3; // position in last timestep (needed to handle bouncing)
Vector2f dOld1,dOld2,dOld3; // direction in last timestep (needed to handle bouncing)
float sOld1,sOld2,sOld3; // speed in last timestep (needed to handle bouncing)
Vector2f midPos; // middle position (tracked each timestep, used for rendering)
Vector2f travelDir; // travel direction (tracked each timestep, used for rendering)
float bending; // point used for circular arc bending of the wave function inside envelope
// bouncing and sliding
bool bounced1, bounced2, bounced3; // indicates if this vertex bounced in this timestep
bool sliding3; // indicates if the 3rd vertex is "sliding" (used for diffraction)
bool use3rd; // indicates if the third vertex is present (it marks a (potential) sliding point)
// wave function related
float phase; // phase of the representative wave inside the envelope, phase speed vs. group speed
float phOld; // old phase
float E; // wave energy flux for this packet (determines amplitude)
float envelope; // envelope size for this packet
float k,w0; // w0 = angular frequency, k = current wavenumber
float k_L,w0_L,k_H,w0_H; // w0 = angular frequency, k = current wavenumber, L/H are for lower/upper boundary
float d_L,d_H; // d = travel distance to reference wave (gets accumulated over time), L/H are for lower/upper boundary
float ampOld; // amplitude from last timestep, will be smoothly adjusted in each timestep to meet current desired amplitude
float dAmp; // amplitude change in each timestep (depends on desired waveheight so all waves (dis)appear with same speed)
// serial deletion step variable
bool toDelete; // used internally for parallel deletion criterion computation
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
struct GHOST_PACKET
{
Vector2f pos; // 2D position
Vector2f dir; // current movement direction
float speed; // speed of the packet
float envelope; // envelope size for this packet
float bending; // point used for circular arc bending of the wave function inside envelope
float k; // k = current (representative) wavenumber(s)
float phase; // phase of the representative wave inside the envelope
float dPhase; // phase speed relative to group speed inside the envelope
float ampOld; // amplitude from last timestep, will be smoothly adjusted in each timestep to meet current desired amplitude
float dAmp; // change in amplitude in each timestep (waves travel PACKET_BLEND_TRAVEL_FACTOR*envelopesize in space until they disappear)
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
class Packets
{
public:
// scene
int m_groundSizeX, m_groundSizeY; // pixel size of the ground texture
float *m_ground; // texture containing the water depth and land (0.95)
float *m_distMap; // distance map of the boundary map
Vector2f *m_gndDeriv;
Vector2f *m_bndDeriv;
// packet managing
WAVE_PACKET *m_packet; // wave packet data
GHOST_PACKET*m_ghostPacket; // ghost packet data
int m_packetBudget; // this can be changed any time (soft budget)
int m_packetNum; // current size of the buffer used for packets / ghosts
float m_softDampFactor;
int *m_usedPacket;
int m_usedPackets;
int *m_freePacket;
int m_freePackets;
int *m_usedGhost;
int m_usedGhosts;
int *m_freeGhost;
int m_freeGhosts;
// simulation
float m_time;
float m_oldTime;
float m_elapsedTime;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Packets(int packetBudget);
~Packets(void);
void Reset();
float GetBoundaryDist(Vector2f &p);
Vector2f GetBoundaryNormal(Vector2f &p);
float GetGroundVal(Vector2f &p);
Vector2f GetGroundNormal(Vector2f &p);
float GetWaterDepth(Vector2f &p);
void UpdateTime(float dTime);
void ExpandWavePacketMemory(int targetNum);
int GetFreePackedID();
void DeletePacket(int id);
int GetFreeGhostID();
void DeleteGhost(int id);
void CreatePacket(float pos1x, float pos1y, float pos2x, float pos2y, float dir1x, float dir1y, float dir2x, float dir2y, float k_L, float k_H, float E);
void CreateLinearWavefront(float xPos, float yPos, float dirx, float diry, float crestlength, float lambda_L, float lambda_H, float E);
void CreateSpreadingPacket(float xPos, float yPos, float dirx, float diry, float spreadFactor, float crestlength, float lambda_L, float lambda_H, float E);
void CreateCircularWavefront(float xPos, float yPos, float radius, float lambda_L, float lambda_H, float E);
void GetWaveParameters(float waterDepth, float w0, float kIn, float &k_out, float &speed_out);
float GetPhaseSpeed(float w_0, float kIn);
float GetWaveAmplitude(float area, float E, float k);
float GetIntersectionDistance(Vector2f pos1, Vector2f dir1, Vector2f pos2, Vector2f dir2);
bool AdvectPacketVertex(float elapsedTime, Vector2f &posIn, Vector2f &dirIn, float w0, float &kIn, float &speedIn, Vector2f &posOut, Vector2f &dirOut, float &speedOut);
void AdvectWavePackets(float dTime);
};