// Taken from https://github.com/jeschke/water-wave-packets #pragma once #include "constants.h" #include #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wint-in-bool-context" #include #pragma GCC diagnostic pop using namespace Eigen; using namespace std; // simulation parameters #define PACKET_SPLIT_ANGLE 0.95105f // direction angle variation threshold: 0.95105=18 degree #define PACKET_SPLIT_DISPERSION 0.3f // if the fastest wave in a packet traveled PACKET_SPLIT_DISPERSION*Envelopesize ahead, or the slowest by the same amount behind, subdivide this packet into two wavelength intervals #define PACKET_KILL_AMPLITUDE_DERIV 0.0001f // waves below this maximum amplitude derivative gets killed #define PACKET_BLEND_TRAVEL_FACTOR 1.0f // in order to be fully blended (appear or disappear), any wave must travel PACKET_BLEND_TRAVEL_FACTOR times "envelope size" in space (1.0 is standard) #define PACKET_ENVELOPE_SIZE_FACTOR 3.0f // size of the envelope relative to wavelength (determines how many "bumps" appear) #define PACKET_ENVELOPE_MINSIZE 0.02f // minimum envelope size in meters (smallest expected feature) #define PACKET_ENVELOPE_MAXSIZE 10.0f // maximum envelope size in meters (largest expected feature) #define PACKET_BOUNCE_FREQSPLIT true // (boolean) should a wave packet produce smaller waves at a bounce/reflection (->widen the wavelength interval of this packet)? #define PACKET_BOUNCE_FREQSPLIT_K 31.4f // if k_L is smaller than this value (lambda = 20cm), the wave is (potentially) split after a bounce #define MAX_SPEEDNESS 0.07f // all wave amplitudes a are limited to a <= MAX_SPEEDNESS*2.0*M_PI/k // physical parameters #define SIGMA 0.074f // surface tension N/m at 20 grad celsius #define GRAVITY 9.81f // GRAVITY m/s^2 #define DENSITY 998.2071f // water density at 20 degree celsius #define KINEMATIC_VISCOSITY 0.0000089f // kinematic viscosity #define PACKET_SLOWAVE_K 143.1405792f // k of the slowest possible wave packet #define PACKET_SLOWAVE_W0 40.2646141f // w_0 of the slowest possible wave packet // memory management #define PACKET_BUFFER_DELTA 500000 // initial number of vertices, packet memory will be increased on demand by this stepsize struct WAVE_PACKET { // positions, directions, speed of the tracked vertices Vector2f pos1,pos2,pos3; // 2D position Vector2f dir1,dir2,dir3; // current movement direction float speed1,speed2,speed3; // speed of the particle Vector2f pOld1,pOld2,pOld3; // position in last timestep (needed to handle bouncing) Vector2f dOld1,dOld2,dOld3; // direction in last timestep (needed to handle bouncing) float sOld1,sOld2,sOld3; // speed in last timestep (needed to handle bouncing) Vector2f midPos; // middle position (tracked each timestep, used for rendering) Vector2f travelDir; // travel direction (tracked each timestep, used for rendering) float bending; // point used for circular arc bending of the wave function inside envelope // bouncing and sliding bool bounced1, bounced2, bounced3; // indicates if this vertex bounced in this timestep bool sliding3; // indicates if the 3rd vertex is "sliding" (used for diffraction) bool use3rd; // indicates if the third vertex is present (it marks a (potential) sliding point) // wave function related float phase; // phase of the representative wave inside the envelope, phase speed vs. group speed float phOld; // old phase float E; // wave energy flux for this packet (determines amplitude) float envelope; // envelope size for this packet float k,w0; // w0 = angular frequency, k = current wavenumber float k_L,w0_L,k_H,w0_H; // w0 = angular frequency, k = current wavenumber, L/H are for lower/upper boundary float d_L,d_H; // d = travel distance to reference wave (gets accumulated over time), L/H are for lower/upper boundary float ampOld; // amplitude from last timestep, will be smoothly adjusted in each timestep to meet current desired amplitude float dAmp; // amplitude change in each timestep (depends on desired waveheight so all waves (dis)appear with same speed) // serial deletion step variable bool toDelete; // used internally for parallel deletion criterion computation public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW }; struct GHOST_PACKET { Vector2f pos; // 2D position Vector2f dir; // current movement direction float speed; // speed of the packet float envelope; // envelope size for this packet float bending; // point used for circular arc bending of the wave function inside envelope float k; // k = current (representative) wavenumber(s) float phase; // phase of the representative wave inside the envelope float dPhase; // phase speed relative to group speed inside the envelope float ampOld; // amplitude from last timestep, will be smoothly adjusted in each timestep to meet current desired amplitude float dAmp; // change in amplitude in each timestep (waves travel PACKET_BLEND_TRAVEL_FACTOR*envelopesize in space until they disappear) public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW }; class Packets { public: // scene int m_groundSizeX, m_groundSizeY; // pixel size of the ground texture float *m_ground; // texture containing the water depth and land (0.95) float *m_distMap; // distance map of the boundary map Vector2f *m_gndDeriv; Vector2f *m_bndDeriv; // packet managing WAVE_PACKET *m_packet; // wave packet data GHOST_PACKET*m_ghostPacket; // ghost packet data int m_packetBudget; // this can be changed any time (soft budget) int m_packetNum; // current size of the buffer used for packets / ghosts float m_softDampFactor; int *m_usedPacket; int m_usedPackets; int *m_freePacket; int m_freePackets; int *m_usedGhost; int m_usedGhosts; int *m_freeGhost; int m_freeGhosts; // simulation float m_time; float m_oldTime; float m_elapsedTime; public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW Packets(int packetBudget); ~Packets(void); void Reset(); float GetBoundaryDist(Vector2f &p); Vector2f GetBoundaryNormal(Vector2f &p); float GetGroundVal(Vector2f &p); Vector2f GetGroundNormal(Vector2f &p); float GetWaterDepth(Vector2f &p); void UpdateTime(float dTime); void ExpandWavePacketMemory(int targetNum); int GetFreePackedID(); void DeletePacket(int id); int GetFreeGhostID(); void DeleteGhost(int id); void CreatePacket(float pos1x, float pos1y, float pos2x, float pos2y, float dir1x, float dir1y, float dir2x, float dir2y, float k_L, float k_H, float E); void CreateLinearWavefront(float xPos, float yPos, float dirx, float diry, float crestlength, float lambda_L, float lambda_H, float E); void CreateSpreadingPacket(float xPos, float yPos, float dirx, float diry, float spreadFactor, float crestlength, float lambda_L, float lambda_H, float E); void CreateCircularWavefront(float xPos, float yPos, float radius, float lambda_L, float lambda_H, float E); void GetWaveParameters(float waterDepth, float w0, float kIn, float &k_out, float &speed_out); float GetPhaseSpeed(float w_0, float kIn); float GetWaveAmplitude(float area, float E, float k); float GetIntersectionDistance(Vector2f pos1, Vector2f dir1, Vector2f pos2, Vector2f dir2); bool AdvectPacketVertex(float elapsedTime, Vector2f &posIn, Vector2f &dirIn, float w0, float &kIn, float &speedIn, Vector2f &posOut, Vector2f &dirOut, float &speedOut); void AdvectWavePackets(float dTime); };