papillon/src/papillon.cpp
2016-05-04 00:23:18 +02:00

209 lines
5.1 KiB
C++

#include "ros/ros.h"
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include <opencv/cv.h>
#include <sstream>
using namespace cv;
using namespace std;
class Traite_image {
public:
Mat prev;
bool first = true;
int resize_f = 8;
ros::NodeHandle n;
image_transport::ImageTransport it;
image_transport::Publisher pub;
image_transport::Subscriber sub;
Traite_image() : n("~"),it(n) {
pub = it.advertise("/image_out", 1);
sub = it.subscribe("/usb_cam/image_raw", 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed"));
}
// This processes an image and publishes the result.
void on_image(const sensor_msgs::ImageConstPtr& msg) {
cv_bridge::CvImageConstPtr bridge_input;
try {
bridge_input = cv_bridge::toCvShare(msg,sensor_msgs::image_encodings::RGB8);
}
catch (Exception& e) {
std::ostringstream errstr;
errstr << "cv_bridge exception caught: " << e.what();
return;
}
//Mat& input = const_cast<Mat&>(bridge_input->image);
const Mat& input = bridge_input->image;
Mat next;
resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f));
cvtColor(next, next, CV_BGR2GRAY);
Mat output; // (input.rows, input.cols, CV_32FC2);
ROS_INFO("got input");
if (first) {
prev = next.clone();
first = false;
ROS_INFO("first done");
}
//unsigned int size = input.rows * input.cols * 3;
//unsigned char* begin_input = (unsigned char*)(input.data);
//unsigned char* end_input = (unsigned char*)(input.data) + size;
//unsigned char* out = (unsigned char*)(output.data);
//unsigned char* in = begin_input;
// This is an efficient way to process each channel in each pixel,
// with an iterator taste.
//while(in != end_input) {
// *(out++) = *(ptr_prev) - *(in);
// *(ptr_prev++) = *(in++);
//}
Mat_<Point2f> flow;
Ptr<DenseOpticalFlow> tvl1 = createOptFlow_DualTVL1();
tvl1->calc(prev, next, flow);
drawOpticalFlow(flow, output);
pub.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
// bridge_input is handled by a smart-pointer. No explicit delete needed.
ROS_INFO("pub");
prev = next.clone();
}
inline bool isFlowCorrect(Point2f u)
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
}
Vec3b computeColor(float fx, float fy)
{
static bool first = true;
// relative lengths of color transitions:
// these are chosen based on perceptual similarity
// (e.g. one can distinguish more shades between red and yellow
// than between yellow and green)
const int RY = 15;
const int YG = 6;
const int GC = 4;
const int CB = 11;
const int BM = 13;
const int MR = 6;
const int NCOLS = RY + YG + GC + CB + BM + MR;
static Vec3i colorWheel[NCOLS];
if (first)
{
int k = 0;
for (int i = 0; i < RY; ++i, ++k)
colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
for (int i = 0; i < YG; ++i, ++k)
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
for (int i = 0; i < GC; ++i, ++k)
colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
for (int i = 0; i < CB; ++i, ++k)
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
for (int i = 0; i < BM; ++i, ++k)
colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
for (int i = 0; i < MR; ++i, ++k)
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
first = false;
}
const float rad = sqrt(fx * fx + fy * fy);
const float a = atan2(-fy, -fx) / (float)CV_PI;
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
const int k0 = static_cast<int>(fk);
const int k1 = (k0 + 1) % NCOLS;
const float f = fk - k0;
Vec3b pix;
for (int b = 0; b < 3; b++)
{
const float col0 = colorWheel[k0][b] / 255.f;
const float col1 = colorWheel[k1][b] / 255.f;
float col = (1 - f) * col0 + f * col1;
if (rad <= 1)
col = 1 - rad * (1 - col); // increase saturation with radius
else
col *= .75; // out of range
pix[2 - b] = static_cast<uchar>(255.f * col);
}
return pix;
}
void drawOpticalFlow(const Mat_<Point2f>& flow, Mat& dst, float maxmotion = -1)
{
dst.create(flow.size(), CV_8UC3);
dst.setTo(Scalar::all(0));
// determine motion range:
float maxrad = maxmotion;
if (maxmotion <= 0)
{
maxrad = 1;
for (int y = 0; y < flow.rows; ++y)
{
for (int x = 0; x < flow.cols; ++x)
{
Point2f u = flow(y, x);
if (!isFlowCorrect(u))
continue;
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
}
}
}
for (int y = 0; y < flow.rows; ++y)
{
for (int x = 0; x < flow.cols; ++x)
{
Point2f u = flow(y, x);
if (isFlowCorrect(u))
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
}
}
}
};
int main(int argc, char **argv)
{
ros::init(argc, argv, "test_opencv");
Traite_image dataset=Traite_image();
ros::spin();
return 0;
}