Implement Kyle Hounslow's greyscale threshold motion tracking example
This commit is contained in:
parent
14cdb2c0fb
commit
3830c1e411
1 changed files with 74 additions and 23 deletions
|
@ -12,9 +12,15 @@ using namespace std;
|
|||
|
||||
class Traite_image {
|
||||
public:
|
||||
const static int SENSITIVITY_VALUE = 30;
|
||||
const static int BLUR_SIZE = 10;
|
||||
|
||||
Mat prev;
|
||||
bool first = true;
|
||||
int resize_f = 8;
|
||||
int resize_f = 1;
|
||||
|
||||
int theObject[2] = {0,0};
|
||||
Rect objectBoundingRectangle = Rect(0,0,0,0);
|
||||
|
||||
ros::NodeHandle n;
|
||||
|
||||
|
@ -47,42 +53,87 @@ class Traite_image {
|
|||
Mat next;
|
||||
resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f));
|
||||
cvtColor(next, next, CV_BGR2GRAY);
|
||||
Mat output; // (input.rows, input.cols, CV_32FC2);
|
||||
ROS_INFO("got input");
|
||||
Mat output = input.clone(); // (input.rows, input.cols, CV_32FC2);
|
||||
//ROS_INFO("got input");
|
||||
if (first) {
|
||||
prev = next.clone();
|
||||
first = false;
|
||||
ROS_INFO("first done");
|
||||
}
|
||||
|
||||
//unsigned int size = input.rows * input.cols * 3;
|
||||
//unsigned char* begin_input = (unsigned char*)(input.data);
|
||||
//unsigned char* end_input = (unsigned char*)(input.data) + size;
|
||||
//unsigned char* out = (unsigned char*)(output.data);
|
||||
//unsigned char* in = begin_input;
|
||||
|
||||
// This is an efficient way to process each channel in each pixel,
|
||||
// with an iterator taste.
|
||||
//while(in != end_input) {
|
||||
// *(out++) = *(ptr_prev) - *(in);
|
||||
// *(ptr_prev++) = *(in++);
|
||||
//}
|
||||
|
||||
Mat_<Point2f> flow;
|
||||
Ptr<DenseOpticalFlow> tvl1 = createOptFlow_DualTVL1();
|
||||
|
||||
tvl1->calc(prev, next, flow);
|
||||
|
||||
drawOpticalFlow(flow, output);
|
||||
// Subtract the 2 last frames and threshold them
|
||||
Mat thres;
|
||||
absdiff(prev,next,thres);
|
||||
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
||||
// Blur to eliminate noise
|
||||
blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE));
|
||||
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
||||
searchForMovement(thres, output);
|
||||
|
||||
pub.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
|
||||
// bridge_input is handled by a smart-pointer. No explicit delete needed.
|
||||
|
||||
ROS_INFO("pub");
|
||||
//ROS_INFO("pub");
|
||||
|
||||
prev = next.clone();
|
||||
}
|
||||
|
||||
//int to string helper function
|
||||
string intToString(int number){
|
||||
|
||||
//this function has a number input and string output
|
||||
std::stringstream ss;
|
||||
ss << number;
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
void searchForMovement(Mat thresholdImage, Mat &cameraFeed){
|
||||
//notice how we use the '&' operator for objectDetected and cameraFeed. This is because we wish
|
||||
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
||||
//eg. we draw to the cameraFeed to be displayed in the main() function.
|
||||
bool objectDetected = false;
|
||||
Mat temp;
|
||||
thresholdImage.copyTo(temp);
|
||||
//these two vectors needed for output of findContours
|
||||
vector< vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
//find contours of filtered image using openCV findContours function
|
||||
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
||||
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
||||
|
||||
//if contours vector is not empty, we have found some objects
|
||||
if(contours.size()>0)objectDetected=true;
|
||||
else objectDetected = false;
|
||||
|
||||
if(objectDetected){
|
||||
//the largest contour is found at the end of the contours vector
|
||||
//we will simply assume that the biggest contour is the object we are looking for.
|
||||
vector< vector<Point> > largestContourVec;
|
||||
largestContourVec.push_back(contours.at(contours.size()-1));
|
||||
//make a bounding rectangle around the largest contour then find its centroid
|
||||
//this will be the object's final estimated position.
|
||||
objectBoundingRectangle = boundingRect(largestContourVec.at(0));
|
||||
int xpos = objectBoundingRectangle.x+objectBoundingRectangle.width/2;
|
||||
int ypos = objectBoundingRectangle.y+objectBoundingRectangle.height/2;
|
||||
|
||||
//update the objects positions by changing the 'theObject' array values
|
||||
theObject[0] = xpos , theObject[1] = ypos;
|
||||
}
|
||||
//make some temp x and y variables so we dont have to type out so much
|
||||
int x = theObject[0];
|
||||
int y = theObject[1];
|
||||
|
||||
//draw some crosshairs around the object
|
||||
circle(cameraFeed,Point(x,y),20,Scalar(0,255,0),2);
|
||||
line(cameraFeed,Point(x,y),Point(x,y-25),Scalar(0,255,0),2);
|
||||
line(cameraFeed,Point(x,y),Point(x,y+25),Scalar(0,255,0),2);
|
||||
line(cameraFeed,Point(x,y),Point(x-25,y),Scalar(0,255,0),2);
|
||||
line(cameraFeed,Point(x,y),Point(x+25,y),Scalar(0,255,0),2);
|
||||
|
||||
//write the position of the object to the screen
|
||||
putText(cameraFeed,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2);
|
||||
}
|
||||
|
||||
inline bool isFlowCorrect(Point2f u)
|
||||
{
|
||||
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
|
||||
|
|
Loading…
Reference in a new issue