cleaned all comments
This commit is contained in:
parent
658cd286ba
commit
1d4447e29a
1 changed files with 10 additions and 59 deletions
|
@ -56,17 +56,16 @@ class Traite_image {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
//cv::Mat& input = const_cast<cv::Mat&>(bridge_input->image);
|
|
||||||
const cv::Mat& input = bridge_input->image;
|
const cv::Mat& input = bridge_input->image;
|
||||||
cv::Mat next;
|
cv::Mat next;
|
||||||
resize(input, next, cv::Size(input.size().width/resize_f, input.size().height/resize_f));
|
resize(input, next, cv::Size(input.size().width/resize_f, input.size().height/resize_f));
|
||||||
cv::Mat output;// = input.clone(); // (input.rows, input.cols, CV_32FC2);
|
cv::Mat output;
|
||||||
if (first) {
|
if (first) {
|
||||||
for (int i = 0; i < NB_FRAME_DROP; ++i) {
|
for (int i = 0; i < NB_FRAME_DROP; ++i) {
|
||||||
prevs.push_back(next.clone());
|
prevs.push_back(next.clone());
|
||||||
}
|
}
|
||||||
first = false;
|
first = false;
|
||||||
ROS_INFO("first done");
|
ROS_INFO("Ready");
|
||||||
}
|
}
|
||||||
|
|
||||||
cv::Mat next_stab;
|
cv::Mat next_stab;
|
||||||
|
@ -85,22 +84,11 @@ class Traite_image {
|
||||||
|
|
||||||
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
|
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
|
||||||
pub_thres.publish(cv_bridge::CvImage(msg->header, "mono8", closed_thres).toImageMsg());
|
pub_thres.publish(cv_bridge::CvImage(msg->header, "mono8", closed_thres).toImageMsg());
|
||||||
// bridge_input is handled by a smart-pointer. No explicit delete needed.
|
|
||||||
|
|
||||||
prevs.pop_back();
|
prevs.pop_back();
|
||||||
prevs.insert(prevs.begin(), next.clone());
|
prevs.insert(prevs.begin(), next.clone());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
//int to string helper function
|
|
||||||
string intToString(int number){
|
|
||||||
//this function has a number input and string output
|
|
||||||
std::stringstream ss;
|
|
||||||
ss << number;
|
|
||||||
return ss.str();
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void stabiliseImg(cv::Mat prev, cv::Mat cur, cv::Mat &output){
|
void stabiliseImg(cv::Mat prev, cv::Mat cur, cv::Mat &output){
|
||||||
cv::Mat cur_grey, prev_grey;
|
cv::Mat cur_grey, prev_grey;
|
||||||
cv::cvtColor(cur, cur_grey, cv::COLOR_BGR2GRAY);
|
cv::cvtColor(cur, cur_grey, cv::COLOR_BGR2GRAY);
|
||||||
|
@ -115,7 +103,7 @@ class Traite_image {
|
||||||
cv::goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30);
|
cv::goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30);
|
||||||
cv::calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err);
|
cv::calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err);
|
||||||
|
|
||||||
// weed out bad cv::Matches
|
// weed out bad matches
|
||||||
for(size_t i=0; i < status.size(); i++) {
|
for(size_t i=0; i < status.size(); i++) {
|
||||||
if(status[i]) {
|
if(status[i]) {
|
||||||
prev_corner2.push_back(prev_corner[i]);
|
prev_corner2.push_back(prev_corner[i]);
|
||||||
|
@ -144,64 +132,40 @@ class Traite_image {
|
||||||
cv::cvtColor(cur, cur_grey, cv::COLOR_BGR2GRAY);
|
cv::cvtColor(cur, cur_grey, cv::COLOR_BGR2GRAY);
|
||||||
cv::GaussianBlur(prev_grey, prev_grey, cv::Size(BLUR_Size,BLUR_Size), 3.0);
|
cv::GaussianBlur(prev_grey, prev_grey, cv::Size(BLUR_Size,BLUR_Size), 3.0);
|
||||||
cv::GaussianBlur(cur_grey, cur_grey, cv::Size(BLUR_Size,BLUR_Size), 3.0);
|
cv::GaussianBlur(cur_grey, cur_grey, cv::Size(BLUR_Size,BLUR_Size), 3.0);
|
||||||
//blur(prev_grey, prev_grey, cv::Size(BLUR_Size, BLUR_Size));
|
|
||||||
//blur(cur_grey, cur_grey, cv::Size(BLUR_Size, BLUR_Size));
|
|
||||||
|
|
||||||
// Subtract the 2 last frames and threshold them
|
// Subtract the 2 last frames and threshold them
|
||||||
cv::Mat thres;
|
cv::Mat thres;
|
||||||
cv::absdiff(prev_grey,cur_grey,thres);
|
cv::absdiff(prev_grey,cur_grey,thres);
|
||||||
// threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
|
||||||
// // Blur to eliminate noise
|
|
||||||
// blur(thres, thres, cv::Size(BLUR_Size, BLUR_Size));
|
|
||||||
|
|
||||||
cv::Mat element = getStructuringElement( cv::MORPH_ELLIPSE,
|
cv::Mat element = getStructuringElement( cv::MORPH_ELLIPSE,
|
||||||
cv::Size( 2*ERODE_SIZE + 1, 2*ERODE_SIZE+1 ),
|
cv::Size( 2*ERODE_SIZE + 1, 2*ERODE_SIZE+1 ),
|
||||||
cv::Point( ERODE_SIZE, ERODE_SIZE ) );
|
cv::Point( ERODE_SIZE, ERODE_SIZE ) );
|
||||||
// Apply the dilation operation
|
// Apply the erode operation
|
||||||
cv::erode(thres, thres, element );
|
cv::erode(thres, thres, element );
|
||||||
|
|
||||||
thres.copyTo(out2);
|
|
||||||
|
|
||||||
|
|
||||||
cv::threshold(thres, thres, SENSITIVITY_VALUE, 255, cv::THRESH_BINARY);
|
cv::threshold(thres, thres, SENSITIVITY_VALUE, 255, cv::THRESH_BINARY);
|
||||||
|
|
||||||
|
// Intermediate output
|
||||||
|
thres.copyTo(out2);
|
||||||
|
|
||||||
cv::Mat closed_thres;
|
cv::Mat closed_thres;
|
||||||
cv::Mat structuringElement = getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(CLOSE_SIZE, CLOSE_SIZE));
|
cv::Mat structuringElement = getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(CLOSE_SIZE, CLOSE_SIZE));
|
||||||
cv::morphologyEx( thres, closed_thres, cv::MORPH_CLOSE, structuringElement );
|
cv::morphologyEx( thres, closed_thres, cv::MORPH_CLOSE, structuringElement );
|
||||||
// dilated_thres.copyTo(output);
|
|
||||||
|
|
||||||
|
|
||||||
//closed_thres.copyTo(output);
|
|
||||||
|
|
||||||
//notice how we use the '&' operator for objectDetected and output. This is because we wish
|
|
||||||
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
|
||||||
//eg. we draw to the output to be displayed in the main() function.
|
|
||||||
bool objectDetected = false;
|
bool objectDetected = false;
|
||||||
cv::Mat temp;
|
cv::Mat temp;
|
||||||
closed_thres.copyTo(temp);
|
closed_thres.copyTo(temp);
|
||||||
//these two vectors needed for output of findContours
|
|
||||||
vector< vector<cv::Point> > contours;
|
vector< vector<cv::Point> > contours;
|
||||||
vector<cv::Vec4i> hierarchy;
|
vector<cv::Vec4i> hierarchy;
|
||||||
//find contours of filtered image using openCV findContours function
|
//find contours of filtered image using openCV findContours function
|
||||||
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
|
||||||
cv::findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
cv::findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
||||||
|
|
||||||
//if contours vector is not empty, we have found some objects
|
//if contours vector is not empty, we have found some objects
|
||||||
if(contours.size()>0)objectDetected=true;
|
if(contours.size()>0){
|
||||||
else objectDetected = false;
|
|
||||||
|
|
||||||
if(objectDetected){
|
|
||||||
//the largest contour is found at the end of the contours vector
|
|
||||||
//we will simply assume that the biggest contour is the object we are looking for.
|
|
||||||
//vector< vector<Point> > largestContourVec;
|
|
||||||
//largestContourVec.push_back(contours.at(contours.size()-1));
|
|
||||||
//make a bounding rectangle around the largest contour then find its centroid
|
|
||||||
//this will be the object's final esticv::Mated position.
|
|
||||||
vector<cv::Rect> nc_rects; // Non connected rectangles
|
vector<cv::Rect> nc_rects; // Non connected rectangles
|
||||||
for(size_t i=0; i<contours.size();i++)
|
for(size_t i=0; i<contours.size();i++)
|
||||||
{
|
{
|
||||||
nc_rects.push_back(cv::boundingRect(contours[i]));
|
nc_rects.push_back(cv::boundingRect(contours[i]));
|
||||||
//cv::rectangle(output, objectBoundingRectangle, cv::Scalar(0, 255, 0), 2);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
vector<cv::Rect> c_rects; // Connected rectangles
|
vector<cv::Rect> c_rects; // Connected rectangles
|
||||||
|
@ -211,7 +175,6 @@ class Traite_image {
|
||||||
cv::rectangle(output, rect, cv::Scalar(0, 255, 0), 2);
|
cv::rectangle(output, rect, cv::Scalar(0, 255, 0), 2);
|
||||||
|
|
||||||
cv::Rect objBRect = c_rects.front();
|
cv::Rect objBRect = c_rects.front();
|
||||||
//cv::rectangle(output, objBRect, cv::Scalar(0, 255, 0), 2);
|
|
||||||
papillon::BoundingBox bbox = papillon::BoundingBox();
|
papillon::BoundingBox bbox = papillon::BoundingBox();
|
||||||
bbox.x = objBRect.x / (float)cur.size().width;
|
bbox.x = objBRect.x / (float)cur.size().width;
|
||||||
bbox.y = objBRect.y / (float)cur.size().height;
|
bbox.y = objBRect.y / (float)cur.size().height;
|
||||||
|
@ -220,20 +183,8 @@ class Traite_image {
|
||||||
pub_cmd.publish(bbox);
|
pub_cmd.publish(bbox);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
//make some temp x and y variables so we dont have to type out so much
|
|
||||||
//~ int x = objectBoundingRectangle.x;
|
|
||||||
//~ int y = objectBoundingRectangle.y;
|
|
||||||
//~ int width = objectBoundingRectangle.width;
|
|
||||||
//~ int height = objectBoundingRectangle.height;
|
|
||||||
|
|
||||||
//draw a rectangle around the object
|
|
||||||
//rectangle(output, Point(x,y), Point(x+width, y+height), cv::Scalar(0, 255, 0), 2);
|
|
||||||
|
|
||||||
//write the position of the object to the screen
|
|
||||||
//putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,cv::Scalar(255,0,0),2);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void cleanBBoxes(vector<cv::Rect> nc_rects, cv::Size img, vector<cv::Rect> &c_rects) {
|
void cleanBBoxes(vector<cv::Rect> nc_rects, cv::Size img, vector<cv::Rect> &c_rects) {
|
||||||
int max = 0;
|
int max = 0;
|
||||||
for (auto r : nc_rects) {
|
for (auto r : nc_rects) {
|
||||||
|
|
Loading…
Reference in a new issue