#include "ros/ros.h" #include #include #include #include #include #include using namespace std; class Traite_image { public: const static int SENSITIVITY_VALUE = 40; const static int BLUR_Size = 15; cv::Mat prev; cv::Mat last_T; bool first = true; int resize_f = 1; int theObject[2] = {0,0}; cv::Rect objectBoundingRectangle = cv::Rect(0,0,0,0); ros::NodeHandle n; image_transport::ImageTransport it; image_transport::Publisher pub_img; ros::Publisher pub_cmd; image_transport::Subscriber sub; Traite_image() : n("~"),it(n) { pub_img = it.advertise("/image_out", 1); pub_cmd = n.advertise("/bbox", 1); sub = it.subscribe("/usb_cam/image_raw", 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed")); } // This processes an image and publishes the result. void on_image(const sensor_msgs::ImageConstPtr& msg) { cv_bridge::CvImageConstPtr bridge_input; try { bridge_input = cv_bridge::toCvShare(msg,sensor_msgs::image_encodings::RGB8); } catch (cv::Exception& e) { std::ostringstream errstr; errstr << "cv_bridge exception caught: " << e.what(); return; } //cv::Mat& input = const_cast(bridge_input->image); const cv::Mat& input = bridge_input->image; cv::Mat next; resize(input, next, cv::Size(input.size().width/resize_f, input.size().height/resize_f)); cv::Mat output;// = input.clone(); // (input.rows, input.cols, CV_32FC2); //ROS_INFO("got input"); if (first) { prev = next.clone(); first = false; ROS_INFO("first done"); } cv::Mat next_stab; stabiliseImg(prev, next, next_stab); int crop_ratio = 6; float crop_x = next_stab.size().width/crop_ratio; float crop_y = next_stab.size().height/crop_ratio; float crop_w = next_stab.size().width*(1-2.0/crop_ratio); float crop_h = next_stab.size().height*(1-2.0/crop_ratio); cv::Rect myROI(crop_x, crop_y, crop_w, crop_h); cv::Mat next_stab_cropped = next_stab(myROI); cv::Mat prev_cropped = prev(myROI); searchForMovement(prev_cropped, next_stab_cropped, output); pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); // bridge_input is handled by a smart-pointer. No explicit delete needed. //droneTracking(Rect(Point(0,0), output.size())); //ROS_INFO("pub"); prev = next.clone(); } //int to string helper function string intToString(int number){ //this function has a number input and string output std::stringstream ss; ss << number; return ss.str(); } void stabiliseImg(cv::Mat prev, cv::Mat cur, cv::Mat &output){ cv::Mat cur_grey, prev_grey; cv::cvtColor(cur, cur_grey, cv::COLOR_BGR2GRAY); cv::cvtColor(prev, prev_grey, cv::COLOR_BGR2GRAY); // vector from prev to cur vector prev_corner, cur_corner; vector prev_corner2, cur_corner2; vector status; vector err; cv::goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30); cv::calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err); // weed out bad cv::Matches for(size_t i=0; i < status.size(); i++) { if(status[i]) { prev_corner2.push_back(prev_corner[i]); cur_corner2.push_back(cur_corner[i]); } } cv::Mat T = estimateRigidTransform(prev_corner2, cur_corner2, true); // false = rigid transform, no scaling/shearing if(T.data == NULL) { last_T.copyTo(T); } T.copyTo(last_T); cv::Mat cur2; cv::warpAffine(cur, cur2, T, cur.size(),cv::INTER_CUBIC|cv::WARP_INVERSE_MAP); cur2.copyTo(output); } void searchForMovement(cv::Mat prev, cv::Mat cur, cv::Mat &output){ cv::Mat cur_grey, prev_grey; cur.copyTo(output); cv::cvtColor(prev, prev_grey, cv::COLOR_BGR2GRAY); cv::cvtColor(cur, cur_grey, cv::COLOR_BGR2GRAY); cv::GaussianBlur(prev_grey, prev_grey, cv::Size(BLUR_Size,BLUR_Size), 3.0); cv::GaussianBlur(cur_grey, cur_grey, cv::Size(BLUR_Size,BLUR_Size), 3.0); //blur(prev_grey, prev_grey, cv::Size(BLUR_Size, BLUR_Size)); //blur(cur_grey, cur_grey, cv::Size(BLUR_Size, BLUR_Size)); // Subtract the 2 last frames and threshold them cv::Mat thres; cv::absdiff(prev_grey,cur_grey,thres); // threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY); // // Blur to eliminate noise // blur(thres, thres, cv::Size(BLUR_Size, BLUR_Size)); cv::threshold(thres, thres, SENSITIVITY_VALUE, 255, cv::THRESH_BINARY); //~ int dilation_Size = 2; //~ cv::Mat element = getStructuringElement( MORPH_ELLIPSE, //~ cv::Size( 2*dilation_Size + 1, 2*dilation_Size+1 ), //~ Point( dilation_Size, dilation_Size ) ); //~ // Apply the dilation operation //~ cv::Mat dilated_thres; //~ dilate(thres, dilated_thres, element ); //~ //~ dilated_thres.copyTo(output); cv::Mat closed_thres; cv::Mat structuringElement = getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(40, 40)); cv::morphologyEx( thres, closed_thres, cv::MORPH_CLOSE, structuringElement ); //closed_thres.copyTo(output); //notice how we use the '&' operator for objectDetected and output. This is because we wish //to take the values passed into the function and manipulate them, rather than just working with a copy. //eg. we draw to the output to be displayed in the main() function. bool objectDetected = false; cv::Mat temp; closed_thres.copyTo(temp); //these two vectors needed for output of findContours vector< vector > contours; vector hierarchy; //find contours of filtered image using openCV findContours function //findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours cv::findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours //if contours vector is not empty, we have found some objects if(contours.size()>0)objectDetected=true; else objectDetected = false; if(objectDetected){ //the largest contour is found at the end of the contours vector //we will simply assume that the biggest contour is the object we are looking for. //vector< vector > largestContourVec; //largestContourVec.push_back(contours.at(contours.size()-1)); //make a bounding rectangle around the largest contour then find its centroid //this will be the object's final esticv::Mated position. for(int i=0; i