#include "ros/ros.h" #include #include #include #include #include #include #include using namespace cv; using namespace std; class Traite_image { public: const static int THRESHOLD_DETECT_SENSITIVITY = 10; const static int BLUR_SIZE = 5; const static int THRESHOLD_MOV = 5; const static int MOVEMENT_THRES = 0.1; Mat prev; Mat last_T; bool first = true; // Features vectors vector prev_ftr, cur_ftr; // Downsize factor int resize_f = 2; int theObject[2] = {0,0}; Rect objectBoundingRectangle = Rect(0,0,0,0); ros::NodeHandle n; image_transport::ImageTransport it; image_transport::Publisher pub_img; ros::Publisher pub_cmd; image_transport::Subscriber sub; Traite_image() : n("~"),it(n) { pub_img = it.advertise("/image_out", 1); pub_cmd = n.advertise("/vrep/drone/cmd_vel", 1); sub = it.subscribe("/usb_cam/image_raw", 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed")); } // This processes an image and publishes the result. void on_image(const sensor_msgs::ImageConstPtr& msg) { cv_bridge::CvImageConstPtr bridge_input; try { bridge_input = cv_bridge::toCvShare(msg,sensor_msgs::image_encodings::RGB8); } catch (Exception& e) { std::ostringstream errstr; errstr << "cv_bridge exception caught: " << e.what(); return; } //Mat& input = const_cast(bridge_input->image); const Mat& input = bridge_input->image; Mat next; resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f)); Mat output;// = input.clone(); // (input.rows, input.cols, CV_32FC2); //ROS_INFO("got input"); if (first) { prev = next.clone(); first = false; ROS_INFO("first done"); } Mat next_stab; stabiliseImg(prev, next, next_stab); Rect myROI(next_stab.size().width/8, next_stab.size().height/8, next_stab.size().width*3/4, next_stab.size().height*3/4); Mat next_stab_cropped = next_stab(myROI); Mat prev_cropped = prev(myROI); trackingOptFlow(prev_cropped, next_stab_cropped, output); //searchForMovementOptFlow(prev_cropped, next_stab_cropped, output); pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); // bridge_input is handled by a smart-pointer. No explicit delete needed. droneTracking(Rect(Point(0,0), output.size())); //ROS_INFO("pub"); prev = next.clone(); } //int to string helper function string intToString(int number){ //this function has a number input and string output std::stringstream ss; ss << number; return ss.str(); } void stabiliseImg(Mat prev, Mat cur, Mat &output){ Mat cur_grey, prev_grey; cvtColor(cur, cur_grey, COLOR_BGR2GRAY); cvtColor(prev, prev_grey, COLOR_BGR2GRAY); // vector from prev to cur vector prev_corner, cur_corner; vector prev_corner2, cur_corner2; vector status; vector err; goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30); calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err); // weed out bad matches prev_ftr.clear(); cur_ftr.clear(); for(size_t i=0; i < status.size(); i++) { if(status[i]) { prev_ftr.push_back(prev_corner[i]); cur_ftr.push_back(cur_corner[i]); } } Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing if(T.data == NULL) { last_T.copyTo(T); } T.copyTo(last_T); Mat cur2; warpAffine(cur, cur2, T, cur.size(),INTER_NEAREST|WARP_INVERSE_MAP); cur2.copyTo(output); } void searchForMovement(Mat prev, Mat cur, Mat &output){ Mat cur_grey, prev_grey; cur.copyTo(output); cvtColor(prev, prev_grey, COLOR_BGR2GRAY); cvtColor(cur, cur_grey, COLOR_BGR2GRAY); // Subtract the 2 last frames and threshold them Mat thres; absdiff(prev_grey,cur_grey,thres); threshold(thres, thres, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); // Blur to eliminate noise blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE)); threshold(thres, thres, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); //notice how we use the '&' operator for objectDetected and output. This is because we wish //to take the values passed into the function and manipulate them, rather than just working with a copy. //eg. we draw to the output to be displayed in the main() function. bool objectDetected = false; Mat temp; thres.copyTo(temp); //these two vectors needed for output of findContours vector< vector > contours; vector hierarchy; //find contours of filtered image using openCV findContours function //findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours //if contours vector is not empty, we have found some objects if(contours.size()>0)objectDetected=true; else objectDetected = false; if(objectDetected){ //the largest contour is found at the end of the contours vector //we will simply assume that the biggest contour is the object we are looking for. vector< vector > largestContourVec; largestContourVec.push_back(contours.at(contours.size()-1)); //make a bounding rectangle around the largest contour then find its centroid //this will be the object's final estimated position. objectBoundingRectangle = boundingRect(largestContourVec.at(0)); } //make some temp x and y variables so we dont have to type out so much int x = objectBoundingRectangle.x; int y = objectBoundingRectangle.y; int width = objectBoundingRectangle.width; int height = objectBoundingRectangle.height; //draw a rectangle around the object rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2); //write the position of the object to the screen putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2); } void searchForMovementOptFlow(Mat prev, Mat cur, Mat &output){ Mat cur_grey, prev_grey; cur.copyTo(output); cvtColor(prev, prev_grey, COLOR_BGR2GRAY); cvtColor(cur, cur_grey, COLOR_BGR2GRAY); Mat flow; calcOpticalFlowFarneback(prev_grey, cur_grey, flow, 0.5, 3, 15, 3, 5, 1.2, 0); vector flow_coord(2); Mat flow_norm, angle; split(flow, flow_coord); cartToPolar(flow_coord[0], flow_coord[1], flow_norm, angle); //threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); // Blur to eliminate noise blur(flow_norm, flow_norm, Size(BLUR_SIZE, BLUR_SIZE)); threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); flow_norm.convertTo(flow_norm, CV_8U); bool objectDetected = false; Mat temp; flow_norm.copyTo(temp); //these two vectors needed for output of findContours vector< vector > contours; vector hierarchy; //find contours of filtered image using openCV findContours function //findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours //if contours vector is not empty, we have found some objects if(contours.size()>0)objectDetected=true; else objectDetected = false; if(objectDetected){ //the largest contour is found at the end of the contours vector //we will simply assume that the biggest contour is the object we are looking for. vector< vector > largestContourVec; largestContourVec.push_back(contours.at(contours.size()-1)); //make a bounding rectangle around the largest contour then find its centroid //this will be the object's final estimated position. objectBoundingRectangle = boundingRect(largestContourVec.at(0)); } //make some temp x and y variables so we dont have to type out so much int x = objectBoundingRectangle.x; int y = objectBoundingRectangle.y; int width = objectBoundingRectangle.width; int height = objectBoundingRectangle.height; //draw a rectangle around the object rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2); //write the position of the object to the screen putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2); } void warpPoints(vector p, vector &p_warp, Mat T, bool invert=false) { if(invert) invertAffineTransform(T, T); p_warp.clear(); for(size_t i=0; i < p.size(); ++i) { Mat src(3/*rows*/,1 /* cols */,CV_64F); src.at(0,0)=p[i].x; src.at(1,0)=p[i].y; src.at(2,0)=1.0; Mat dst = T*src; //USE MATRIX ALGEBRA p_warp.push_back(Point2f(dst.at(0,0),dst.at(1,0))); } } void trackingOptFlow(Mat prev, Mat cur, Mat &output) { vector curc_stab; Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing ROS_INFO("ready to warp"); warpPoints(cur_ftr, curc_stab, T, true); ROS_INFO("warped"); vector objects; for(size_t i=0; i < prev_ftr.size(); ++i) { float flow_norm = norm(prev_ftr[i] - cur_ftr[i]) / prev.size().height; if(flow_norm > MOVEMENT_THRES) objects.push_back(cur_ftr[i]); } for(size_t i=0; i < objects.size(); ++i) { circle(output, objects[i], 5, Scalar(0, 200, 0), 1); } } inline bool isFlowCorrect(Point2f u) { return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; } void droneTracking(Rect img_size) { Point2f centre_image = Point2f(img_size.width/2, img_size.height/2); Point2f centre_rect = Point2f(objectBoundingRectangle.x + objectBoundingRectangle.width/2, objectBoundingRectangle.y + objectBoundingRectangle.height/2); geometry_msgs::Twist twist = geometry_msgs::Twist(); if(centre_rect.x < centre_image.x-THRESHOLD_MOV) { twist.angular.z = 0.2; } else if(centre_rect.x > centre_image.x+THRESHOLD_MOV) { twist.angular.z = -0.2; } pub_cmd.publish(twist); } }; int main(int argc, char **argv) { ros::init(argc, argv, "test_opencv"); Traite_image dataset=Traite_image(); ros::spin(); return 0; }