118 lines
2.6 KiB
Python
118 lines
2.6 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import PyQt5 as qt
|
|
|
|
# Vn = 4e5 # En V
|
|
|
|
def make_Y(n):
|
|
Y = np.zeros((n, n))
|
|
return Y
|
|
|
|
def connect_Y(x, y, Ys, Yp, Y):
|
|
Y[x, y] = -Ys
|
|
Y[y, x] = -Ys
|
|
Y[x, x] += Ys + Yp
|
|
Y[y, y] += Ys + Yp
|
|
|
|
def system_matrix(n, Y, Vn):
|
|
S = np.zeros((n, n))
|
|
for i in range(n):
|
|
for k in range(n):
|
|
if i == k:
|
|
S[i, k] = n
|
|
else:
|
|
S[i, k] = -1
|
|
S[i, k] *= Vn**2 * Y[i, k]
|
|
return S
|
|
|
|
def line_coor(n):
|
|
tab = []
|
|
i = 0
|
|
k = 1
|
|
while i < n:
|
|
|
|
while k < n:
|
|
tab += [[i, k]]
|
|
k += 1
|
|
i += 1
|
|
k = i + 1
|
|
|
|
return tab
|
|
|
|
print(line_coor(4))
|
|
|
|
def line_matrix(Y):
|
|
n = len(Y)
|
|
t = line_coor(n)
|
|
lS = np.zeros((len(t), n))
|
|
|
|
for i in range(len(t)):
|
|
e = t[i]
|
|
y = - Y[e[0], e[1]]
|
|
lS[i, e[0]] = y
|
|
lS[i, e[1]] = - y
|
|
|
|
return lS
|
|
|
|
def delta_select(i, S):
|
|
S = np.delete(S, (i), axis=0)
|
|
S = np.delete(S, (i), axis=1)
|
|
return S
|
|
|
|
def power_select(i, P):
|
|
P = np.array(P[:i].tolist() + P[i+1:].tolist())
|
|
return P
|
|
|
|
def complete_data(P, delta, i):
|
|
ndelta = np.array(delta[:i].tolist() + [0] + delta[i:].tolist())
|
|
nP = np.array(P[:i].tolist() + [-np.sum(P)] + P[i:].tolist())
|
|
return ndelta, nP
|
|
|
|
# Vn
|
|
Vn = 2e5
|
|
|
|
# Vecteur des puissances
|
|
P = np.array([1000, -500, -250, -250])
|
|
P = P * 1e6 # Passage en MW
|
|
|
|
# Création de la matrice d'admitances (dimension n)
|
|
Y = make_Y(4)
|
|
connect_Y(2, 3, 0.1, 0, Y)
|
|
connect_Y(1, 3, 0.15, 0, Y)
|
|
connect_Y(2, 1, 0.05, 0, Y)
|
|
connect_Y(2, 0, 0.05, 0, Y)
|
|
connect_Y(3, 0, 0.05, 0, Y)
|
|
print("Admittance matrix :", Y)
|
|
|
|
# Mise en place du système linéaire à résoudre
|
|
S = system_matrix(4, Y, Vn) # dim n
|
|
S = delta_select(3, S) # dim n-1, sélection de l'angle de transport de référence (delta_3)
|
|
print("System matrix :", S)
|
|
|
|
# Sélection des puissances (dimension n-1)
|
|
P = power_select(3, P)
|
|
print("Power input : ", P)
|
|
|
|
# Résolution (dimension n-1)
|
|
invS = np.linalg.inv(S)
|
|
print("Inverse : ", invS)
|
|
|
|
# Calcul des angles de transport (dimension n-1)
|
|
delta = np.dot(invS, P)
|
|
|
|
# Ajout de l'angle de transport d'origine et de la puissance associée (on repasse en dim n)
|
|
ndelta, nP = complete_data(P, delta, 3)
|
|
print("Power :", nP)
|
|
print("Delta (rad) :", ndelta * 180 / 3.1415)
|
|
|
|
# Calcul de la matrice de ligne
|
|
lS = line_matrix(Y)
|
|
print("Line matrix : ", lS)
|
|
|
|
# Calcul des puissances de lignes
|
|
line_power = Vn**2 * np.dot(lS, ndelta)
|
|
lcoor = line_coor(len(ndelta))
|
|
disp_line = []
|
|
for i in range(len(line_power)):
|
|
disp_line += [lcoor[i] + [line_power[i]]]
|
|
print("Line power : ", disp_line)
|