import numpy as np import matplotlib.pyplot as plt import PyQt5 as qt # Valeurs des constantes de l'exemple du cours ptot = 1000 # [MW] p2max = 400 # [MW] p23max = 500 t21 = 0.4545 t22 = 0.8182 def C1(x): return 30*x + 0.01*x**2 def C2(x): return 20*x + 0.02*x**2 def f(x): # Lagrangien pour une optimisation simple de la production return C1(x[0]) + C2(x[1]) + x[2] * (ptot - x[0] - x[1]) def f2(x): # Lagrangien pour une optimisation avec contrainte de production max return f(x[0:3]) - abs(x[3]) * (p2max - x[1]) def f3(x): # Lagrangien pour une optimisation avec contrainte de production et de transport max return f(x[0:3]) - abs(x[3]) * (p23max - t21 * x[0] - t22 * x[1]) def grad(f, x, h=1e-4): # Il y a surement des librairies qui font ça mieux, mais c'était plus rapide d'écrire cette fonction que de chercher dans la doc res = [] for i in range(len(x)): delta = f(x[:i] + [x[i] + h / 2] + x[i+1:]) - f(x[:i] + [x[i] - h / 2] + x[i+1:]) res += [delta / h] return res def norm(x): # Idem, flemme d'utiliser des arrays et de lire la doc np n = 0 for d in x: n += d**2 return np.sqrt(n) def adaptation_f(f): # Permet de lancer la descente de gradient sur la norme du gradient du lagrangien l = lambda x : norm(grad(f, x, h=1e-6)) # Un pas plus faible va créer des divergences return l def minimize(f, x0, h=1e-4, step=1e-1, tol=1e-8, N=1e4, echo=False): # Initialisation x = x0 g = grad(f, x, h) n = 0 prev = norm(g) + 2*tol # Très moche mais j'ai pas le temps de faire un truc plus élégant while abs(norm(g) - prev) > tol: # Mise à jour de la variable de suivi de convergence prev = norm(g) # Calcul for i in range(len(x)): # Moche mais flemme de rendre ça joli x[i] -= g[i] * step # Descente de gradient classique g = grad(f, x, h) # Print pour debug if (n % 100 == 0) and echo: print("Itération ", n) print("norm(g) = ", norm(g)) print("prev = ", prev) print("x = ", x) print("g = ", g) # Système anti boucle infinie if n > N: return x n += 1 return x def custom_minimize(f, x0, echo=False): # Fonction avec plusieurs étapes successives de résolution, pour gagner en précision et éviter de diverger res_app = minimize(f, x0, step=5e-1) if echo: print(res_app) res_app = minimize(f, res_app, step=1e-3, tol=1e-12, h=1e-5) if echo: print(res_app) res_app = minimize(f, res_app, step=1e-5, tol=1e-14, h=1e-5) if echo: print(res_app) res_app = minimize(f, res_app, step=1e-6, tol=1e-16, h=5e-6) if echo: print(res_app) return res_app print("Cas sans contraintes") print(custom_minimize(adaptation_f(f), [0, 0, 0])) print("Cas avec contrainte de production") print(custom_minimize(adaptation_f(f2), [0, 0, 0, 0.01])) print("Cas avec contraintes de production et de transport") print(custom_minimize(adaptation_f(f3), [0, 0, 0, 0.01]))